2.4 Use Postulates and Diagrams

You used postulates involving angle and segment measures.

You will use postulates involving points, lines, and planes.

So you can draw the layout of a neighborhood, as in Ex. 39.

In geometry, rules that are accepted without proof are called *postulates* or *axioms*. Rules that are proved are called *theorems*. Postulates and theorems are often written in conditional form. Unlike the converse of a definition, the converse of a postulate or theorem cannot be assumed to be true.

You have already learned four postulates.

POSTULATE 1 Ruler Postulate

POSTULATE 2 Segment Addition Postulate

POSTULATE 3 Protractor Postulate

POSTULATE 4 Angle Addition Postulate

For Your Notebook

POSTULATES

Point, Line, and Plane Postulates

POSTULATE 5 Through any two points there exists exactly one line.

POSTULATE 6 A line contains at least two points.

POSTULATE 7 If two lines intersect, then their intersection is exactly

one point.

POSTULATE 8 Through any three noncollinear points there exists

exactly one plane.

POSTULATE 9 A plane contains at least three noncollinear points.

POSTULATE 10 If two points lie in a plane, then the line containing

them lies in the plane.

POSTULATE 11 If two planes intersect, then their intersection is a line.

ALGEBRA CONNECTION You have been using many of Postulates 5–11 in previous courses.

One way to graph a linear equation is to plot two points whose coordinates satisfy the equation and then connect them with a line. Postulate 5 guarantees that there is exactly one such line. A familiar way to find a common solution of two linear equations is to graph the lines and find the coordinates of their intersection. This process is guaranteed to work by Postulate 7.

EXAMPLE 1 Identify a postulate illustrated by a diagram

State the postulate illustrated by the diagram.

EXAMPLE 2 Identify postulates from a diagram

Use the diagram to write examples of Postulates 9 and 10.

Postulate 9 Plane P contains at least three noncollinear points, A, B, and C.

Postulate 10 Point A and point B lie in plane P, so line n containing A and Balso lies in plane P.

GUIDED PRACTICE

for Examples 1 and 2

- 1. Use the diagram in Example 2. Which postulate allows you to say that the intersection of plane P and plane Q is a line? Postulate 11
- 2. Use the diagram in Example 2 to write examples of Postulates 5, 6, and 7.

CONCEPT SUMMARY

For Your Notebook

Interpreting a Diagram

When you interpret a diagram, you can assume information about size or measure only if it is marked.

YOU CANNOT ASSUME YOU CAN ASSUME

All points shown are coplanar. G, F, and E are collinear. \overrightarrow{BF} and \overrightarrow{CE} intersect. $\angle AHB$ and $\angle BHD$ are a linear pair.

 \overrightarrow{BF} and \overrightarrow{CF} do not intersect. ∠AHF and ∠BHD are vertical angles.

A. H. J. and D are collinear. $\angle BHA \cong \angle CJA$

 \overrightarrow{AD} and \overrightarrow{BF} intersect at H. $\overrightarrow{AD} \perp \overrightarrow{BF}$ or $m \angle AHB = 90^{\circ}$

EXAMPLE 3 Use given information to sketch a diagram

Sketch a diagram showing \overrightarrow{TV} intersecting \overrightarrow{PQ} at point W, so that $\overrightarrow{TW} \cong \overrightarrow{WV}$.

Solution

STEP 1 Draw \overrightarrow{TV} and label points T and V.

STEP 2 Draw point W at the midpoint of \overline{TV} . Mark the congruent segments.

STEP 3 Draw \overline{PQ} through W.

perpendicular to a plane if and only if the line intersects the plane in a point and is perpendicular to every line in the plane that intersects it at that point.

In a diagram, a line perpendicular to a plane must be marked with a right angle symbol.

EXAMPLE 4 Interpret a diagram in three dimensions

Which of the following statements *cannot* be assumed from the diagram?

A, B, and F are collinear.

(E, B,and Dare collinear.

 $\sqrt{AB} \perp \text{plane } S$

 $\overline{CD} \perp plane T$

 $\checkmark \overrightarrow{AF}$ intersects \overrightarrow{BC} at point B.

Solution